Get free ebooK with 50 must do coding Question for Product Based Companies solved
Fill the details & get ebook over email
Thank You!
We have sent the Ebook on 50 Must Do Coding Questions for Product Based Companies Solved over your email. All the best!

# Graph Tree

Last Updated on March 23, 2022 by Ria Pathak

### Concepts Used

Depth First Search, Graph

Medium

### Problem Statement :

Check whether the graph is a tree or not.

See original problem statement here

### Solution Approach :

#### Introduction :

For a graph to be tree, there should not be any loops and every vertex must be reachable from atleast one other vertex.

This problem can be solved by many ways like Breadth First Search, Depth First Search or Disjoint Set. Below we are going to discuss two of the above mentioned methods to solve this problem.

#### Method 1 :

The graph must follow these properties:
If there are `n` vertices then there must be `n-1` edges.
It should be connected i.e. every vertex can be reached with atleast one other vertex.

In trees, every node/vertex is connected to atleast one other vertex. Also the total number of edges is also `n-1` for `n` nodes.

#### Method 2 :

The another way of checking our graph whether it is a tree or not that it should have following properties:
It must not contain any cycle.
It must be connected.

As, we can see this approach is almost similar to the approach in method `1`, our goal is to make sure that our graph has no loops or in other words it has exactly `n-1` edges and must be connected. By this way we can ensure our graph is a tree, otherwise not. Refer to the example below for better understanding.

See C++ implementation below.

### Algorithms :

dfs() :

1. For each call, for some vertex `v` ( dfs(`v`) ), we will mark the vertex `v` as visited (`visited[v]= true`).
2. Iterate for all the adjacent vertices of `v` and for every adjacent vertex `a`, do following :
if `a` is not visited i.e `visited[a]= false`,
and if `a` has value `1`.
recursively call dfs (`a`).

### Complexity Analysis:

The time complexity of the first method is represented in the form of `O(V+E)`, where `V` is the number of verices and `E` is the number of edges.

The space complexity of the algorithm is `O(V)` for `visited[]` array.

### Solutions:

```#include <stdio.h>
#include <stdlib.h>
#include<string.h>
#define INT_MIN -99999

struct node {
int vertex;
struct node* next;
};
struct node* createNode(int);

struct Graph {
int numVertices;
};

// Create a node
struct node* createNode(int v) {
struct node* newNode = malloc(sizeof(struct node));
newNode->vertex = v;
newNode->next = NULL;
return newNode;
}

// Create a graph
struct Graph* createAGraph(int vertices) {
struct Graph* graph = malloc(sizeof(struct Graph));
graph->numVertices = vertices;

graph->adjLists = malloc(vertices * sizeof(struct node*));

int i;
for (i = 0; i < vertices; i++)

return graph;
}

void addEdge(struct Graph* graph, int s, int d) {
// Add edge from s to d
struct node* newNode = createNode(d);

// Add edge from d to s
newNode = createNode(s);
}

void dfs(struct Graph *adj,int visited[], int v)
{
visited[v]= 1;

while(u)
//for (i = adj[v].begin(); i != adj[v].end(); ++i)
{
if(!visited[u->vertex])
u= u->next;
}
}

int isTree(struct Graph *adj,int n)
{

int visited[n];
for (int i = 0; i < n; i++)
{visited[i] = 0; }

for (int u = 0; u < n; u++)
if (!visited[u])
return 0;

return 1;
}

int main()
{
int t;
scanf("%d",&t);
while(t--){
int n,e;
scanf("%d %d",&n,&e);

struct Graph* graph = createAGraph(n);
int edge = e;
while(e--)
{
int u,v;
scanf("%d %d",&u,&v);

}
if(edge == n-1 && isTree(graph,n))
printf("YES\n");
else
printf("NO\n");
}

return 0;
}
```
```#include<iostream>
#include <list>
#include <limits.h>
using namespace std;

class Graph
{
int V;
bool isCyclicUtil(int v, bool visited[], int parent);
public:
Graph(int V); // Constructor
void addEdge(int v, int w); // to add an edge to graph
void dfs(bool visited[],int i);
bool isTree(); // returns true if graph is tree
};

Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}

void Graph::dfs(bool visited[], int v)
{
visited[v]= true;

list<int>::iterator i;
for (i = adj[v].begin(); i != adj[v].end(); ++i)
{
if(!visited[*i])
dfs(visited,*i);
}
}

void Graph::addEdge(int v, int w)
{
}

bool Graph::isTree()
{

bool *visited = new bool[V];
for (int i = 0; i < V; i++)
visited[i] = false;

dfs(visited,0);

for (int u = 0; u < V; u++)
if (!visited[u])
return false;

return true;
}

int main()
{
int t;
cin>>t;
while(t--){
int n,e;
cin>>n>>e;

Graph g1(n);
int edge = e;
while(e--)
{
int u,v;
cin>>u>>v;

}
if(edge == n-1 && g1.isTree())
cout<<"YES"<<endl;
else
cout<<"NO"<<endl;
}

return 0;
}
```
```import java.io.*;
import java.util.*;

class Graph
{
private int V; // No. of vertices

// Constructor
Graph(int v)
{
V = v;
for (int i=0; i<v; ++i)
}

// Function to add an edge into the graph
void addEdge(int v,int w)
{
}

Boolean isCyclicUtil(int v, Boolean visited[], int parent)
{
visited[v] = true;
Integer i;

Iterator<Integer> it = adj[v].iterator();
while (it.hasNext())
{
i = it.next();

if (!visited[i])
{
if (isCyclicUtil(i, visited, v))
return true;
}

else if (i != parent)
return true;
}
return false;
}

Boolean isTree()
{
Boolean visited[] = new Boolean[V];
for (int i = 0; i < V; i++)
visited[i] = false;

if (isCyclicUtil(0, visited, -1))
return false;

for (int u = 0; u < V; u++)
if (!visited[u])
return false;

return true;
}

public static void main(String args[])
{
Scanner sc = new Scanner(System.in);
int t= sc.nextInt();
while(t-- !=0)
{
int n,e;
n = sc.nextInt();
e = sc.nextInt();

Graph g1 = new Graph(n);
while(e--!=0)
{
int u,v;
u = sc.nextInt();
v = sc.nextInt();

}
if (g1.isTree())
System.out.println("YES");
else
System.out.println("NO");
}
}
}
```

[forminator_quiz id="1928"]

This article tried to discuss Graph. Hope this blog helps you understand and solve the problem. To practice more problems on Graph you can check out MYCODE | Competitive Programming.